Constraints on active-sterile neutrinos and cosmological bounds

O. Civitarese, M. E. Mosquera

Department of Physics, University of La Plata, Argentina

- Plan of the talk
- Introduction
 - 1. Neutrino oscillations
 - 2. Active-sterile neutrino mixing
 - 3. Neutrinos and primordial abundances
 - 4. Signal to noise ratios for highly energetic neutrinos
- Conclusions

Introduction

- Neutrinos do have a mass and they oscillates between flavor states.
- The information on primordial abundances (BBN) may be used to constraint oscillation parameters
- The mixing between sterile and active neutrinos may also be fixed from BBN observables
- Neutrinos from distant and very energetic objects, like micro quasars, may be measured (signal to noise ratios for these events need to be calculated)
- ANDES mega-detector?

Neutrino oscillations

• neutrino oscillations

 $|\nu_1(t)\rangle$, $|\nu_2(t)\rangle$, $|\nu_3(t)\rangle$ are three mass eigenstates at time t, then

$$\frac{d}{dt} \begin{pmatrix} |\nu_{1}(t) \rangle \\ |\nu_{2}(t) \rangle \\ |\nu_{3}(t) \rangle \end{pmatrix} = H^{(m)} \begin{pmatrix} |\nu_{1}(t) \rangle \\ |\nu_{2}(t) \rangle \\ |\nu_{3}(t) \rangle \end{pmatrix}$$

$$= \begin{pmatrix} E_{1} & 0 & 0 \\ 0 & E_{2} & 0 \\ 0 & 0 & E_{3} \end{pmatrix} \begin{pmatrix} |\nu_{1}(t) \rangle \\ |\nu_{2}(t) \rangle \\ |\nu_{3}(t) \rangle \end{pmatrix}$$

where $H^{(m)}$ is the Hamiltonian in the mass representation, with eigen-

values E_i

neutrino oscillations

Flavor eigenstates $|\nu_l>, |\nu_m>, |\nu_h>$

$$\begin{pmatrix} |\nu_l(t) \rangle \\ |\nu_m(t) \rangle \\ |\nu_h(t) \rangle \end{pmatrix} = U \begin{pmatrix} |\nu_1(t) \rangle \\ |\nu_2(t) \rangle \\ |\nu_3(t) \rangle \end{pmatrix}$$

with

$$U = R_{23}R_{13}R_{12}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 s_{ij} (c_{ij}) reads for $\sin \theta_{ij}$ ($\cos \theta_{ij}$)

neutrino oscillations

Flavor conversion

$$P_{\alpha,\beta} = | < \nu_{\alpha}(t) | \nu_{\beta}(t=0) > |^2 \neq 0$$

then

$$P_{ll} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{12}^2 t}{4E_{\nu}}\right) - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 t}{4E_{\nu}}\right) + \sin^2 2\theta_{13} \sin^2 \theta_{12} \left\{ \sin^2 \left(\frac{\Delta m_{31}^2 t}{4E_{\nu}}\right) - \sin^2 \left(\frac{\Delta m_{12}^2 + \Delta m_{31}^2}{4E_{\nu}}t\right) \right\}$$

where the mass differences are $\Delta m_{ij}^2 = m_i^2 - m_j^2$

neutrino oscillations

- mass hierarchy:
 - Normal: $m_1 \approx m_2 \ll m_3$
 - Inverse: $m_3 \ll m_1 \approx m_2$
 - Degenerate: $m_1 \approx m_2 \approx m_3$

where:

$$\Delta m_{13}^2 \sim 10^{-3} \,\mathrm{eV}^2$$

 $\Delta m_{12}^2 \sim 10^{-5} \,\mathrm{eV}^2$

neutrino mass scale

- double beta decay
 - The two neutrino mode has been observed (Sasha's talk)
 - The neutrinoless mode of the double beta decay is still unobserved: it violates lepton number conservation and only lower limits of the half-lives have been determined (my talk in ANDES-I)
 - The observation will allow for a determination of the neutrino mass scale but still the mechanism may not be determined (next talk by Fedor)

 From LSND (Large Scintillator Neutrino Detector) sterile neutrinos may be introduced

• The neutrino fields in the current

$$J_{\mu} = \overline{\Psi} \gamma_{\mu} \Psi$$

change to $\Psi_{ef} = \alpha \Psi_1 + \beta \Psi_s$, and the current reads

$$J_{\mu} = f \overline{\Psi} \gamma_{\mu} \Psi$$

• MiniBooNE has established stringent limits to the active-sterile neutrino mixing

- KamLAND shows that the mixing (active-sterile) is rather weak
- WMAP measurements set-up a limit to the number of relativistic particles present at the time of BBN
- The square mass differences between active and sterile neutrinos may be of the order of 10^{-10} eV²

• active and sterile neutrinos (normal hierarchy) The new state is degenerate with ν_1 , then

$$\nu_1(t) = \cos \phi \ \hat{\nu}_1(t) - \sin \phi \ \nu_s(t)$$

$$\nu_2(t) = \hat{\nu}_2(t)$$

$$\nu_3(t) = \hat{\nu}_3(t)$$

$$\nu_4(t) = \sin \phi \ \hat{\nu}_1(t) + \cos \phi \ \nu_s(t)$$

where ϕ is the new mixing angle

$$\begin{pmatrix} \nu_{l}(t) \\ \nu_{m}(t) \\ \nu_{h}(t) \\ \nu_{s}(t) \end{pmatrix} = U \begin{pmatrix} \nu_{1}(t) \\ \nu_{2}(t) \\ \nu_{3}(t) \\ \nu_{4}(t) \end{pmatrix}$$

with

 s_{ij} (c_{ij}) reads for $\sin \theta_{ij}$ ($\cos \theta_{ij}$)

• active and sterile neutrinos in the inverse mass hierarchy The new state is degenerate with ν_3

$$U = \begin{pmatrix} c_{13}c_{12} & s_{12}c_{13} & s_{13} & 0 \\ -s_{12}c_{23} - s_{23}s_{13}c_{12} & c_{23}c_{12} - s_{23}s_{13}s_{12} & s_{23}c_{13} & 0 \\ s_{23}s_{12} - s_{13}c_{23}c_{12} & -s_{23}c_{12} - s_{13}s_{12}c_{23} & c_{23}c_{13} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \phi & \sin \phi \\ 0 & 0 & -\sin \phi & \cos \phi \end{pmatrix}$$

• Problem: The observed abundance of ⁷Li does not coincide with the theoretical one if WMAP results are taken as input $((\Omega_B h^2)_{WMAP} = 0.0224 \pm 0.008)$

Abundance	Observed value	Theory
D	$(2.54 \pm 0.23) \times 10^{-5}$	$(2.57^{+0.17}_{-0.13}) \times 10^{-5}$
$^{4}\mathrm{He}$	0.2474 ± 0.0028	$0.2482^{+0.0003}_{-0.0004}$
$^{7}\mathrm{Li}$	$(1.26 \pm 0.26) \times 10^{-10}$	$(4.37 \pm 0.01) \times 10^{-10}$

• Hint: Standard BBN does not take oscillations into account explicitly

 It is then challenging to include them, as well as sterile neutrinos, and re-calculate BBN abundances

- Active and sterile neutrinos in the earlier Universe, by considering
 - two massive (free) neutrinos
 - two massive neutrinos interaction with electrons
 - three massive (active) neutrinos and one sterile neutrino
- Get new limits to reconciliate WMAP and BBN results

The steps are:

- Distribution functions for light neutrinos in presence of sterile neutrinos
- Reaction rates for the conversion of neutrons into protons (and viceversa)
- BBN abundances as a function of the mixing parameters, within WMAP limits
- Comparison with observed abundances

•Density matrix $\mathcal{F}_{ij} = \langle \nu_i | \nu_j \rangle$, in the mass representation and for an expanding Universe is given by the equation:

$$\left(\frac{\partial \mathcal{F}}{\partial t} - \mathbf{H}_{\mathbf{H}} E_{\nu} \frac{\partial \mathcal{F}}{\partial E_{\nu}}\right) = \imath \left[\mathcal{H}_{0}, \mathcal{F}\right]$$

where t is time, H_H is the expansion's constant $H_H = \mu_P T^2$), E_{ν} is the energy of the neutrino and $\mathcal{H}_0 = \text{diag}(E_1, E_2, E_3, E_4)$

Including the interaction between neutrinos and electrons

$$\left(\frac{\partial \mathcal{F}}{\partial t} - \mathcal{H}_{\mathcal{H}} E_{\nu} \frac{\partial \mathcal{F}}{\partial E_{\nu}}\right) = \imath \left[\mathcal{H}_{0} + \sqrt{2}G_{F} \left(n_{e}(T) - \frac{8}{3M_{W}^{2}}\rho_{e}(T)E_{\nu}\right)A, \mathcal{F}\right]$$

• Adding one sterile neutrino one the new density matrix $\mathcal{F}_{ij} = \langle \nu_i | \nu_j \rangle$, (mass basis, expanding universe)

$$\left(\frac{\partial \mathcal{F}}{\partial t} - \mathcal{H}_{\mathcal{H}} E_{\nu} \frac{\partial \mathcal{F}}{\partial E_{\nu}}\right) = \imath \left[\mathcal{H}_{0}, \mathcal{F}\right]$$

 $\mathcal{H}_{0} = \operatorname{diag}\left(E_{1}, E_{2}, E_{3}, E_{4}\right)$ • Initial condition $\left(f_{ij} = U\mathcal{F}U^{\dagger}|_{ij}\right)$:

$$\left(\begin{array}{ccc} f_a & f_{as} \\ f_{sa} & f_s \end{array}\right) \bigg|_{T_0} = \frac{1}{1 + e^{E_{\nu}/T_0}} \left(\begin{array}{ccc} I & 0 \\ 0 & 0 \end{array}\right)$$

- Solutions in the flavor basis:
 - two states:

$$f_l = \frac{1}{1 + e^{E_{\nu}/T}} \left\{ 1 + \frac{\sin^2 2\phi}{2} \left[\cos\left(\frac{\Delta m^2}{6\mu_P} \frac{T}{E_{\nu}} \left(\frac{1}{T^3} - \frac{1}{T_0^3}\right) \right) - 1 \right] \right\}$$

• three states (normal hierarchy):

$$f_l = \frac{1}{1 + e^{E_{\nu}/T}} + \frac{\cos^2 \theta_{13} \cos^2 \theta_{12}}{1 + e^{E_{\nu}/T}} \frac{\sin^2 2\phi}{2} \left[\cos \left(\frac{\Delta m^2}{6\mu_P} \frac{T}{E_{\nu}} \left(\frac{1}{T^3} - \frac{1}{T_0^3} \right) \right) - 1 \right]$$

• three states (inverse hierarchy):

$$f_l = \frac{1}{1 + e^{E_{\nu}/T}} \left\{ 1 + \sin^2 \theta_{13} \frac{\sin^2 2\phi}{2} \left[\cos \left(\frac{\Delta m^2}{6\mu_P} \frac{T}{E_{\nu}} \left(\frac{1}{T^3} - \frac{1}{T_0^3} \right) \right) - 1 \right] \right\}$$

BBN and reactions

• reaction rates for the $n \leftrightarrow p$ process are written:

$$\begin{aligned} \lambda_{(\nu+n\to p+e^{-})} &= \kappa \int_{0}^{\infty} dp_{\nu} \ p_{\nu} E_{\nu} p_{e} E_{e} \left(1-f_{e}\right) f_{l} \\ \lambda_{(e^{+}+n\to p+\overline{\nu})} &= \kappa \int_{0}^{\infty} dp_{e} \ p_{\nu} E_{\nu} p_{e} E_{e} \left(1-f_{l}\right) f_{e} \\ f_{e} &= \left(1+e^{E_{e}/T}\right)^{-1} \\ f_{l} &= \left(1+e^{E_{\nu}/T}\right)^{-1} \left\{1-\frac{\sin^{2} 2\phi}{2} \xi \left[1-g \left(\Delta m^{2}, E_{\nu}, T\right)\right]\right\} \end{aligned}$$

• Primordial elements:

$$\frac{dY_i}{dt} = J(t) - \Gamma(t)Y_i$$

J(t) and $\Gamma(t)$ are the source terms, Y_i is the abundance of the element i

• Quality of the fit

$$\chi^2 = \sum \frac{\left(Y_x^{obs} - Y_x^{teo} \left(\Omega_B h^2, \sin^2 2\phi, \Delta m^2\right)\right)^2}{\sigma_x^2}$$

BBN (results)

• Two active neutrinos

	All data		excluding ⁷ Li	
$\Delta m^2 \; [\mathrm{eV}^2]$	$\sin^2 2\phi \pm \sigma$	$\Omega_B h^2 \pm \sigma$	$\sin^2 2\phi \pm \sigma$	$\Omega_B h^2 \pm \sigma$
10^{-6}	0.002 ± 0.078	$0.025^{+0.002}_{-0.001}$	$0.220^{+0.094}_{-0.086}$	0.023 ± 0.002
10^{-8}	0.002 ± 0.033	0.025 ± 0.001	$0.221\substack{+0.095\\-0.092}$	0.023 ± 0.002
10^{-10}	0.002 ± 0.078	$0.025\substack{+0.002\\-0.001}$	$0.213\substack{+0.094\\-0.086}$	0.023 ± 0.002

• Three active neutrinos:

All data		excluding ⁷ Li		
$\sin^2 2\phi \pm \sigma$	$\Omega_B h^2 \pm \sigma$	$\sin^2 2\phi \pm \sigma$	$\Omega_B h^2 \pm \sigma$	
0.000 ± 0.026	0.0253 ± 0.0015	0.018 ± 0.098	0.0216 ± 0.0017	

• Fixed baryon density (two sterile neutrinos)

Group I				
Data	$\phi_1 \pm \sigma$	$\phi_2 \pm \sigma$	$\chi^2/(N-2)$	
D + ⁴ He + ⁷ Li	0.014 ± 0.220	0.063 ± 0.181	6.28	
D + ⁴ He	0.000 ± 0.165	0.000 ± 0.165	0.93	
Group II				
Data	$\phi_1 \pm \sigma$	$\phi_2 \pm \sigma$	$\chi^2/(N-2)$	
D + ⁴ He + ⁷ Li	0.016 ± 0.079	0.016 ± 0.079	7.02	
D + ⁴ He	0.016 ± 0.063	0.016 ± 0.063	1.79	
Group III				
Data	$\phi_1 \pm \sigma$	$\phi_2 \pm \sigma$	$\chi^2/(N-2)$	
D + ⁴ He + ⁷ Li	0.016 ± 0.047	0.016 ± 0.047	6.50	
D + ⁴ He	0.000 ± 0.055	0.000 ± 0.055	1.90	

• Variable baryon density (two sterile neutrinos). Best-fit parameter values and 1σ errors, considering the mean value of the oscillating terms that include the mass split. The baryon-to-photon ratio η_B is in units of 10^{-10} .

Group I					
Data	$\eta_B \pm \sigma$	$\phi_1 \pm \sigma$	$\phi_2 \pm \sigma$	$\frac{\chi^2}{N-3}$	
D+ ⁴ He+ ⁷ Li	5.09 ± 0.18	0.01 ± 0.13	0.01 ± 0.13	2.55	
D+ ⁴ He	$5.85^{+0.31}_{-0.29}$	0.00 ± 0.16	0.00 ± 0.16	0.93	
	Group II				
Data	$\eta_B \pm \sigma$	$\phi_1 \pm \sigma$	$\phi_2 \pm \sigma$	$\frac{\chi^2}{N-3}$	
D+ ⁴ He+ ⁷ Li	5.09 ± 0.17	0.02 ± 0.05	0.02 ± 0.05	3.58	
D+ ⁴ He	$6.05_{-0.31}^{+0.22}$	0.01 ± 0.06	0.01 ± 0.06	1.93	
Group III					
Data	$\eta_B \pm \sigma$	$\phi_1 \pm \sigma$	$\phi_2 \pm \sigma$	$\frac{\chi^2}{N-3}$	
D+ ⁴ He+ ⁷ Li	5.27 ± 0.27	0.01 ± 0.05	0.01 ± 0.05	3.62	
D+ ⁴ He	$6.05_{-0.31}^{+0.32}$	0.01 ± 0.05	0.01 ± 0.06	2.05	

• Best-fit parameter values and 1σ errors, considering the mean value of the oscillating terms that include the mass split and with the inclusion of only one extra neutrino.

Group I				
Data	$\eta_B \pm \sigma$	$\phi_1 \pm \sigma$	$\frac{\chi^2}{N-2}$	
D+ ⁴ He+ ⁷ Li	5.09 ± 0.12	0.030 ± 0.110	2.39	
$D+^4He$	5.85 ± 0.27	0.010 ± 0.144	0.85	
Group II				
Data	$\eta_B \pm \sigma$	$\phi_1 \pm \sigma$	$\frac{\chi^2}{N-2}$	
D+ ⁴ He+ ⁷ Li	5.21 ± 0.23	0.035 ± 0.050	3.34	
$D+^{4}He$	5.98 ± 0.28	0.015 ± 0.055	1.77	
Group III				
Data	$\eta_B \pm \sigma$	$\phi_1 \pm \sigma$	$\frac{\chi^2}{N-2}$	
D+ ⁴ He+ ⁷ Li	5.12 ± 0.13	0.035 ± 0.033	3.84	
$D+^4He$	5.98 ± 0.28	0.015 ± 0.048	2.23	

Neutrinos from exotic objects

- We shall briefly discuss the possibility of detecting neutrinos from micro quasars:
 - in presence of neutrino oscillations
 - by considering the interaction of the neutrinos with matter
 - by getting the signal to noise ratios, as a function of the size of the detector and of the observation time

- Element of the calculations
 - neutrino oscillations
 - interaction of the neutrinos with matter (MSW effect)
 - Folding of emission and detection processes

• Proton spectra

$$p+p \rightarrow p+p+\xi_{\pi^{0}}\pi^{0}+\xi_{\pi}(\pi^{+}+\pi^{-})$$
$$q_{\gamma}(\psi, E_{\gamma}, z, \theta) = 4\pi\eta_{A}\sigma_{pp}(E_{p})\frac{2Z_{p\rightarrow\pi^{0}}^{(\alpha)}}{\alpha}J_{p}(\psi, E_{\gamma}, z, \theta)$$

(1)

•Muon-neutrino intensity

$$I_{\nu}(E_{\nu},\psi,\theta) = 4 \int dV \frac{f_p}{m_p} \rho_w(r_w) q_{\gamma}(\psi, 2E_{\nu}, z, \theta)$$

$$S_{\nu}(\theta) = \frac{T_{obs}A_{eff}}{4\pi d^2} \int_0^{2\pi} \mathrm{d}\psi \int_{10^6 \mathrm{MeV}}^{E_{\nu}^{max}} I_{\nu}(E,\psi,\theta) P(E) \mathrm{d}E$$

(2)

\bullet The noise above $1~{\rm TeV}$

$$N = \sqrt{T_{obs} A_{eff} \Delta \Omega \int_{10^6 \text{MeV}}^{E_{\nu}^{max}} F_B(E) P(E) dE}$$

where

$$F_B(E) = 2\left(\frac{E}{10^3 \text{MeV}}\right)^{-3.21} \text{MeV}^{-1} \text{m}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

• Neutrino signal-to-noise ratio as a function of the viewing angle θ .

• Neutrino signal-to-noise ratio as a function of v_{∞} .

• Neutrino signal-to-noise ratio as a function of \dot{M}_{\star} .

Summary

- The analysis of the compatibility between theoretical and observed BBN abundances shows that:
 - BBN is indeed sensitive to the neutrino mass hierarchy oscillation (and mixing) parameters
 - the baryon density and the mixing angle (one sterile neutrino scenario), $\Omega_B h^2$ y sin² 2 ϕ , agree with WMAP and LSND if the data on ⁷Li are excluded
 - The same feature reveals for the mixing between three active neutrinos and two sterile neutrinos