

Topological detection of ββ-decay with NEMO-3 and SuperNEMO

Ruben Saakyan University College London ANDES Workshop Valparaiso, Chile 11 January 2012

- Motivation and Concept
- NEMO-3
 - Detector
 - Results
- SuperNEMO
 - Physics reach
 - R&D results
 - Demonstrator
 - Schedule

Double Beta Decay

<u>with</u> 2v's - allowed in Standard Model but still very rare Observed for 11 nuclei with

 $\tau \sim 10^{19}$ - 10^{21} yr For comparison the age of Universe is ~ 10^{10} yr.

 $2n \rightarrow 2p + 2e^- + 2\overline{v}_e$

without v's (0v) - forbidden in SM, lepton number violation. So far not observed $\tau > 10^{25}$ yr Except one claim at 10^{25} yr level $\Rightarrow <m_v > \approx 0.4$ eV!

a.k.a "Klapdor" claim

 $2n \rightarrow 2p + 2e^{-}$

IF 0v observed

- •Neutrino identical to its anti-particle (Majorana particle)
- Access to absolute v mass
- Origin of mass (not Higgs in case of v?)
- Origin of matter-antimatter asymmetry in Universe
- Other new physics: SUSY, V+A, Majoron etc

 Questions as fundamental as those addressed by LHC

•Many can only be addressed by $0\nu\beta\beta$

[≜]UCL

Open-minded search for any 0vββ mechanism

Topology can be used to disentangle underlying physics mechanism

NEMO-3 and SuperNEMO

Unique Detection principle: reconstruct topological signature

- Reconstruct two electrons in the final state $(E_1+E_2 = Q_{BB})$
- Measure several final state observables
 - Individual electron energies
 - Electron trajectories and vertices
 - time of flight
 - Angular distribution between electrons
- \cdot Powerful Background rejection through particle ID: e⁻, e⁺, α , γ

- \Rightarrow "Smoking gun" evidence for $0v\beta\beta$
- Open-minded search for any lepton violating process
- Possibility to disentangle underlying physics mechanism

Neutrino Ettore Majorana Observatory 3

Data taking: Feb'03 - Jan'11

Modane, France (Tunnel Frejus, depth of ~4,800 mwe)

R. Saakyan, NEMO-3 and SuperNEMO, ANDES workshop, Valparaiso

NEMO-3 - 20 sectors with ~10 kg of isotopes

Magnetic field: 25 Gauss

UC

- Gamma shield: 18 cm of pure iron
- Neutron shield:
 - 30cm borated water (external wall)
 - 40cm wood (top and bottom)
- Anti-Radon "factory" and "tent"

≜UCL

NEMO-3 design

- Tracker for full event
 reconstruction
 - 6180 drift cells in Geiger mode: Helium + 4% ethyl alcohol + 1% Ar + 0.1% H_2O
- Calorimeter for energy and time measurement
 - 1940 scintillator blocks coupled to low radioactivity PMTs
- Identify e⁻, e⁺, γ, α
- Identify external and internal events

 $[\]beta\beta$ isotope foils

NEMO-3 ββ event selection

- 2 tracks with charge < 0
- 2 PMT, each > 200 keV
- PMT-Track association
- Common vertex

- Internal hypothesis (external event rejection)
- No other isolated PMT (γ rejection)
- No delayed track (²¹⁴Bi rejection)

External γ (if the γ is not detected in the scintillators)
 Origin: natural radioactivity of the detector or neutrons
 Major bkg for 2νββ but small for 0νββ

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

pair creation

Compton + Compton

Compton + Möller

e-

source

foil

Compton + Möller

γ

External γ (if the γ is not detected in the scintillators)
 Origin: natural radioactivity of the detector or neutrons
 Major bkg for 2νββ but small for 0νββ

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination inside the $\beta\beta$ source foil

beta + Möller

beta + Compton

source

foil

source

foil

 \succ **External** γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination **inside the** ββ **source foil**

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

source

foil

 \succ **External** γ (if the γ is not detected in the scintillators) Origin: natural radioactivity of the detector or neutrons Major bkg for $2\nu\beta\beta$ but small for $0\nu\beta\beta$

 $(^{100}Mo \text{ and } ^{82}Se Q_{\beta\beta} \sim 3 \text{ MeV} > E\gamma(^{208}Tl) \sim 2.6 \text{ MeV})$

> ²³²Th (²⁰⁸Tl) and ²³⁸U (²¹⁴Bi) contamination **inside the** ββ **source foil**

Radon (²¹⁴Bi) inside the tracking detector

- deposits on the wire near the $\beta\beta$ foil
- deposits on the surface of the $\beta\beta$ foil

Radon

[≜]UCl

Pure sample of ²¹⁴Bi – ²¹⁴Po events

Radon

Anti-radon "factory" - trapping Rn in cooled charcoal. A must for a low-background lab.

Pure sample of ²¹⁴Bi – ²¹⁴Po events

[±]UC

Anti-Rn factory: Input=15Bq/m³ \rightarrow Output 15mBq/m³

Inside the detector:

- Phase 1: Feb'03 → Sep'04 A(Radon) ≈ 40 mBq/m³
- ➢ Phase 2: Dec. 2004 → Jan'11
 A (Radon) ≈ 5 mBq/m³

Radon

Anti-radon "factory" - trapping Rn in cooled charcoal. A must for a low-background lab.

Pure sample of ²¹⁴Bi – ²¹⁴Po events

[±]UC

Anti-Rn factory: Input=15Bq/m³ \rightarrow Output 15mBq/m³

Inside the detector:

- Phase 1: Feb'03 → Sep'04 A(Radon) ≈ 40 mBq/m³
- ➢ Phase 2: Dec. 2004 → Jan'11
 A (Radon) ≈ 5 mBq/m³

NEMO-3 latest results (2011)

661 g of ¹³⁰Te

1275 days N(2νββ) = 178 ± 23

$$T_{1/2}^{2v} = [7.0 \pm 0.9(stat) \pm 1.1(syst)] \times 10^{20} \text{ yr}$$

Phys. Rev. Lett. 107, 062504 (2011)

c.f.

Indirect observations (geochemistry): - ~2.7 x 10²¹ yrs in 10⁹ yr old rocks - ~8 x10²⁰ yrs in 10⁷-10⁸ yr old rocks

Indication from MIBETA

 $T_{1/2}^{2\nu} = \left[6.1 \pm 1.4(stat)_{-3.5}^{+2.9}(syst) \right] \times 10^{20} \text{ yr}$

$2\nu\beta\beta$ Results

Isotope	Mass (g)	$Q_{\beta\beta}(keV)$	T _{1/2} (2v) (10 ¹⁹ yrs)	S/B	Comment	Reference
⁸² Se	932	2996	9.6 ± 1.0	4	World's best	Phys.Rev.Lett. 95(2005) 483
¹¹⁶ Cd	405	2809	2.8 ± 0.3	10	World's best	
¹⁵⁰ Nd	37	3367	0.9 ± 0.07	2.7	World's best	Phys. Rev. C 80, 032501 (2009)
⁹⁶ Zr	9.4	3350	2.35 ± 0.21	1	World's best	Nucl.Phys.A 847(2010) 168
⁴⁸ Ca	7	4271	4.4 ± 0.6	6.8 (h.e.)	World's best	
¹⁰⁰ Mo	6914	3034	0.71 ± 0.05	80	World's best	Phys.Rev.Lett. 95(2005) 483
¹³⁰ Te	454	2533	70 ± 14	0.5	First direct detection	Phys. Rev. Lett. 107, 062504 (2011)

Unprecedented accuracy with ¹⁰⁰Mo

2) Ultimate background characterisation for 0v

R. Saakyan, NEMO-3 and SuperNEMO, ANDES workshop, Valparaiso

Search for 0vßß

Data period: Feb'03 - Dec'09

[2.8-3.2] MeV: DATA = 18; MC = 16.4 ± 1.4 T_{1/2}(0v) > 1.0×10²⁴ yr at 90%CL <m_v> < (0.31 - 0.96) eV [2.6-3.2] MeV: DATA = 14; MC = 10.9 ± 1.3 T_{1/2}(0v) > 3.2×10²³ yr at 90%CL <m_v> < (0.94 - 2.6) eV

c.f. CUORICINO: $\langle m_v \rangle \langle (0.3 - 0.7) \text{ eV}$; Combined H-M/IGEX $\langle m_v \rangle \langle (0.22 - 0.41) \text{ eV} \rangle$

Other $0\nu\beta\beta$ modes

ββ decays to excited states

From NEMO-3 to SuperNEMO

NEMO-3

¹⁰⁰Mo

7 kg

²⁰⁸TI: ~ 100 μBq/kg
 ²¹⁴Bi: < 300 μBq/kg
 Rn: 5 mBq/m³

8% @ 3MeV

 $T_{1/2}(\beta\beta0v) > 1 \div 2 \times 10^{24} y$ $< m_v > < 0.3 - 0.9 eV$

R&D since 2006

Isotope

Isotope mass M

Contaminations in the $\beta\beta$ foil

Rn in the tracker

Calorimeter energy resolution (FWHM)

Sensitivity

collaboration

supernemo

SuperNEMO

⁸²Se (or ¹⁵⁰Nd or ⁴⁸Ca)

100+ kg

 208 TI $\leq 2 \mu$ Bq/kg 214 Bi $\leq 10 \mu$ Bq/kg

 $Rn \leq 0.15 \text{ mBq/m}^3$

4% @ 3 MeV

 $T_{1/2}(\beta\beta0v) > 1 \times 10^{26} y$ $< m_v > < 0.04 - 0.1 eV$

- Modular design
 - 20 modules, each with 5kg of isotope
- Each Module:
 - Source: (40mg/cm²) 4x2.7m²
 - ⁸²Se (High $Q_{\beta\beta}$, long $T_{1/2}(2\nu)$, proven enrichment technology)
 - ¹⁵⁰Nd, ⁴⁸Ca being looked at
 - Tracking
 - drift chamber ~2000 cells in Geiger mode
 - Calorimeter:
 - 550 PMTs + scintillators
 - Module surrounded by water passive shielding (water)

Submodule calorimeter

Submodule Source and calibration

SuperNEMO Physics Studies

Full chain of GEANT-4 based software + detector effects + backgrounds + <u>NEMO3 experience</u>

5 yr with 100kg of ⁸²Se:

 $T_{1/2} > 10^{26}$ yr, $< m_v > < 50-100$ meV at 90%CL with target detector parameters

Much more than 1 result!

- Other mechanisms: V+A, Majoron, etc
- Disentangling $< m_v >$ and V+A

See "Probing new physics models of $0\nu\beta\beta$ with SuperNEMO", EPJ C (2010) 70, 972-943.

- $\beta\beta0\nu(and 2\nu)$ to excited states
- Other isotopes

Main Calorimeter Wall

1 1.2 1.4

Energy (MeV)

5 E

0.4 0.6 0.8

SuperNEMO Tracker

- Automated wiring robot design to mass produce under ultra low background conditions
 - 500,000 wires to be strung, crimped and terminated
- Basic design developed and verified with several prototypes
 - Resolution: 0.7mm transverse, 1cm longitudinal
 - Cell efficiency > 98%
- Readout electronic being developed:
 - Allow for single and double-cathode readout
 - Differentiate anode signal

•

≜UCL

Source Radiopurity

- ~2.7m "composite" foil strips of 40-50 mg/cm² (~80 μm)
- Radiopurity (⁸²Se)
 - ²⁰⁸TI < 2 μBq/kg
 - ²¹⁴Bi < 10 μBq/kg

HPGe detectors are used for screening but not sufficient to reach required levels

Dedicated **BiPo** detector developed and

installed in Canfranc (running in 2012)

Radon activity measurement

<u>Requirement</u>: Rn activity inside tracker < 150 µBq/m³

SuperNEMO Demonstrator

Technology Ultimate proof of BG levels Physics Sensitive to K-K claim

7kg of ⁸²Se Bgrd ≤ 0.06 events/yr in the RoI

A Zero-Background Experiment

 $T_{1/2}^{0\nu}(90\% CL) = 2.56 \times 10^{24} \times t \text{ yrs}$

Gerda-I sensitivity in 2.5 years - 6.5×10²⁴ yr (equivalent to 3×10²⁵yr with ⁷⁶Ge)

UCL

SuperNEMO Demonstrator Construction has started

Assembly hall prepared for tracker integration and commissioning

NEMO3 dismantled and removed to free underground space at LSM for Demonstrator

Summary

- NEMO-3 has finished running
 - ¹⁰⁰Mo: $T_{1/2} > 1.0x10^{24}$ yr, $< m_v > < 0.31-0.96$ eV, 90%CL. Other lepton violating mechanisms probed.
 - \Im Unprecedented $2\nu\beta\beta$ measurements: input for NME calculations
 - Improved analysis ongoing. More results in 2012.
 - Invaluable test bench for SuperNEMO and other ββ experiments
- SuperNEMO is capable of probing **new physics at 50-100 meV** neutrino mass scale
- First module (Demonstrator) will start taking data in 2014
- SuperNEMO approach is unique
 - Event topology fully reconstructed smoking gun signature and comprehensive background characterisation
 - Isotope flexibility
 - Modularity. Possible distributed location in different underground labs.
- Target sensitivity (50-100 meV) to be reached in 2019/20