Physics Potential of a Neutrino Detector in the ANDES Underground Laboratory

Hiroshi Nunokawa Dep. of Phys. PUC-Rio, Rio de Janeiro, Brazil

Outline

Introduction

Possible neutrino detector at ANDES

Geoneutrinos

- Supernova neutrinos
- Other possiblities
 - double beta decay
 - sterile neutrinos

Summary

Mainly based on PRD86, 125001 (2012) [arXiv:1207.5454[hep-ph]] on PRD88, 085010 (2013) [arXiv:1304.5006[astro-ph]] in collab. with P. Machado, T. Mühlbeier, R. Z. Funchal

Deep Underground Laboratories in the World

- + China, Korea, India
- None in the southern hemisphere
- Plan to build the first deep underground laboratory in the southern hemisphere

X. Bertou, 3rd ANDES workshop, Valparaiso, Chile, January 11, 2012

maximum overburden ~ 1.7 km

Possible Scientific Programs for ANDES Lab

Neutrinos

- neutrino detector of ~ a few kton
- scintilator like KamLAND/Borexino/SNO
- observation of Solar/Geo/Supernova Neutrinos neutrinoless double beta decay
- **Dark Matter**
 - seasonal variation?
 - new technology ?
- **Geophysics -seismology network between Chile and Argentina**
- **Biology effect of the low radiation for the evolution of life**
- **Experiments with underground accelerator**
 - nuclear astrophysics
 - small accelerator (cyclotron) as neutrino source

we mainly consider two natural neutrino soruces

Earth

Two different approaches

1. Use these sources to study unknown neutrino properties

2. Use neutrinos as a tool to study properties (physics) of these sources

Examples of Water Cherenkov Detectors

50,000 ton water Cherenkov detector (22.5 kton fiducial volume)

Kamioakande

Super-Kamioakande

IMB

Main Contribuitons of Kamiokande, IMB, Super-Kam

Observations of

Proton Decay \longrightarrow Not Observed, SK provides most stringent limits

Atmospheric Neutrinos \longrightarrow SK confirmed oscillation!

Kamiokande and IMB SN 1987A!

Solar Neutrinos — Kamiokand and SK Confirmed Deficit

Accelerator Neutrinos \longrightarrow SK (T2K) observedd oscillation driven by θ_{13}

"Heavy" Water Cherenkov Detectors

SNO (Sudbury Neutrino Observatory) Main Purpuse: Observations of Solar Neutrinos Confirmed Neutrino Flavor Conversion !

Examples of Sintilation Detectors (I)

Herr Auge Reines-Cowan's detector

LVD

KamLAND

LSND

MiniBOONE

Tuesday, May 27, 200

in Nylon Vessel of 4.25 m radius

Examples of Sintilation Detectors (II) Detectors used by Reactor Neutrino experiments

Main Contribuitons of Liquid Scintilation Detectors First detection of neutrino by Reines-Cowasn Experiment! Independent Confirmation of oscillation driven by θ_{12} , identifying the solution to the solar neutrion problem by KamLAND Experiment!

Determination of θ_{13} by Daya Bay, RENO and Double Chooz!

observation of geo-neutrinos by KamLAND and BOREXINO

observation of ⁷Be solar neutrinos by BOREXINO

Indication of Sterile neutrinos by LSND/MiniBooNE

Example of other types of Detectors

MINOS Far Detector Combination of Magnetized Steel and Sintilator \downarrow Most precise determination of $|\Delta m_{32}^2| \equiv |m_3^2 - m_2^2|$

ICARUS Detector Liquid Argon TPC

Proposal for the ANDES laboratory current design

Located at km 3.5-5

- Main hall
 - ▶ (21×23×50) m³
- Secundary hall
 - ▶ (16×14×40) m³
- Offices and small laboratories
 - 3 halls of 100 m²
- Low radiation pit
 - ▶ ø9m, 9m tall

Large experimental pit Ø 30 m, 30 m tall

interesting for a neutrion detector metros

Civil work cost estimated < 2% of tunnel cost

- + Laboratory equipment
- + 2 support laboratories
- + Experiments

Possible Neutrino Detector at ANDES ?

We assume that KamLAND/SNO+ like detector with a few kt can be constructed For definetness, let us assume 3kt L.S. of C₆H₅C₁₂H₂₅ (alkyl Benzene)

KamLAND

18 m

Alkt scintilator

12 m

~0.8 kt scintilator SNO+

Observation of Geoneutrinos at ANDES

We know that Earth Interior should be something like below ...

But not so easy to probe directly ... deepest hole ever made on the Earth ~ 12 km depth only ~ 0.2 % of the Earth Radius, only upper part of the Earth crust !

Kola Superdeep Barehole (former Soviet Union)

Integrated Ocean Driling Program (IODP)

capable to dig more than 7 km from the seabed one of the purposes: direct access to the Earth Mantle

Methods to study Earth Interior

 geochemistry: analysis of samples from the crust and upper mantle (deepest hole ~ 12 km, deepst rock samples from ~ 200 km)

2. seismology: it is possible to reconstruct the density profile of the Earth (and ditinguish solid from liquid) but not the compositions

geoneutrinos: new probe to study Earth Interior opening a new field "Neutrino Geoscience"

Origin of the Earth Heat?

Heat Flow

The Uranium-238 Decay Chain

 $^{238}U \rightarrow ^{206}Pb + 8 \,^{4}He + 6 \,^{-}e^{-} + 6 \,^{-}\nu_{e} + 51.7 \,[MeV]$

The Thorium-232 Decay Chain

 232 Th $\rightarrow ^{206}$ Pb + 6 4 He + 4 e⁻ + 4 $\bar{\nu}_{e}$ + 42.7 [MeV]

Expected Geoneutrino Spectra

More Recent Results from KamLAND

Gando et al, KamLAND collaboration, arXiv:1303.4667 [hep-ex]

More Recent Results from KamLAND

Observation of Geoneutrinos at ANDES

Why at ANDES?

Interesting Location (Higher Geo-nu flux) Interesting to confirm the site dependence

Very low reactor neutrino background

We know that the concentration of U and Th is larger in the upper Earth Crust

Table 2.3: Uranium and Thorium Concentrations in Continental Crust

	Uranium Concentration [ppm]		
	Upper Crust	Middle Crust	Lower Crust
McLennan & Taylor (1999)	2.8	0.28	
	0.91		
Wedepohl (1995)	2.5	0.93	
	1.7		
Rudnick & Fountain (1995)	(2.8)	1.6	0.2
	1.42		
Condie (1993)	2.4 / 2.2	_	_

Enomoto, PhD thesis, 2005

	Thorium Concentration [ppm]			
	Upper Crust	Middle Crust	Lower Crust	
McLennan & Taylor (1999)	10.7	1.06		
	3.5			
Wedepohl (1995)	10.3	6.6		
	8.5			
Rudnick & Fountain (1995)	(10.7)	6.1	1.2	
	5.6			
Condie (1993)	9.1 / 8.6	-	-	

U: ~ 2,5 - 2,8 ppm Th: ~ 10,3 - 10,7 ppm Th/U ~ 4 But we do not know the concentration of U and Th in the deep Mantle (and core of Earth) reference values for the Mantle : U ~ 0.012 pm, Th ~ 0.048 ppm

Earth Crust Thickness Map

Earth Crust Thickness Map Around Andes Lab.

Concentrations of U and Th assumed in this work

Layer	$c_{ m U}~(\mu~{ m g/g})$	$c_{ m Th}~(\mu~{ m g/g})$	
Oceanic Sediment	1.68	6.91	
Oceanic Crust	0.1	0.22	
Continental Sediment	2.8	10.7	
Upper Continental Crust	2.8	10.7	
Middle Continental Crust	1.6	6.1	
Lower Continental Crust	0.2	1.2	
Upper Mantle	0.012	0.048	
Lower Mantle	0.012	0.048	

Typically, Th/U ~ 4

Larger U and Th concentration in the continental crust

Expected Geoneutrino flux at ANDES

Flux of Geo-Neutrinos coming from U as a function of the distance

Cumulative Flux at the ANDES

Machado et al., PRD86, 125001 (2012) [arXiv:1207.5454[hep-ph]]

Interesting place because of larger flux of Geo-neutrinos (to confirm site dependence)

Enomoto, Neutrino Sciences 2007

U and Th are more concentrated in the continental crust

Another Advantage: Very few reactors

World Reactor Locations

distance to nearest reactor ~ 600 km

N_{reac BG} ~ 2 event for 3 kt/yr at Andes Laboratory

Events/10³²

-protons/year

Enomoto, Neutrino Sciences 2007

Latitude [deg]

Expected Geoneutrinocflux and events at ANDES

comparison Marith of there sheets Mantle

Kamioka Gran Sasso SNO Hawaii Pyhasalmi

of event /3 kt/yr

Mantle

Location	Number from U	Number from Th	Total
Gran Sasso	53.8	14.7	68.5
Kamioka	45.7	12.4	58.1
Hawaii	27.3	7.4	34.7
Sudbury	63.2	17.2	80.4
Pyhäsalmi	66.1	18.0	84.1
ANDES	64.8	17.6	82.4
Observation of Supernova (SN) Neutrinos at ANDES

Stellar Collapse and Supernova Explosion

Stellar Collapse and Supernova Explosion

Sanduleak –69 202

Tarantula Nebula

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Sanduleak –69 202

Supernova 1987A 23 February 1987

Neutrino Signal of Supernova 1987A

Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

Observation of Supernova (SN) Neutrinos at ANDES

Relevance of the ANDES detector

Galactic SN is so rare that it is highly welcome to have as many detector runnig as possible

~ IO Galactic SN in last ~ 2000 yrs

Complementary to the detectors in the Northern Hemisphere, increase the chance to see Earth matter effect

Observation of V coming from next galactic supernova

last Galactic SN was observed in 1604

theoretical prediction rate of galactic SN ~ a few SN per century

Distributions taken from Mirizzi et al, JCAP05, 012 (2006)

Distance ~ 6 kpc

For simplicity, we consider only the following 2 channels of CC and NC reactions

(I) CC: Inverse Beta Decay

 $\bar{\nu}_{e} + p \rightarrow n + e^{+}$

depends on neutrino oscillation

(2) NC: Neutrino-Proton elastic scattering

 $\nu + \mathbf{p} \rightarrow \nu + \mathbf{p}$

does not depend on oscillation

Beacom, Farr & Vogel, PRD66, 033001 (2002) Dasgupta & Beacom, PRD83, 113006 (2011)

However, collective effects, shock wave, etc, can change the value of $\overline{p}(E)$

Expected # of events for galactic SN Prediction for ANDES D = 10kpc 3kt liquid scintilator

SNO

KamLAND BOREXINO

	Chemical Co	mposition of the Se		
Reaction	(a) $C_{12}H_{26} + C_9H_{12}$	(b) C_9H_{12}	(c) $C_6H_5C_{12}H_{25}$	Assumptions
	(80% + 20%)	pseudocumene	alkyl benzene	
$\bar{\nu}_e + p \to n + e^+$	873	630	762	No Oscillation
$\overline{\bar{\nu}_e + p \to n + e^+}$	924	669	804	$\bar{p} = c_{12}^2 = 0.69 \text{ (NH)}, \langle E_{\nu_x} \rangle = 18 \text{ MeV}$
$\bar{\nu}_e + p \to n + e^+$	1038	750	903	$\bar{p} = 0.0 \text{ (IH)}, \langle E_{\nu_x} \rangle = 18 \text{ MeV}$
$\bar{\nu}_e + p \to n + e^+$	957	690	834	$\bar{p} = c_{12}^2 = 0.69 \text{ (NH)}, \langle E_{\nu_x} \rangle = 20 \text{ MeV}$
$\bar{\nu}_e + p \to n + e^+$	1140	825	993	$\bar{p} = 0.0 \text{ (IH)}, \langle E_{\nu_x} \rangle = 20 \text{ MeV}$
$\bar{\nu}_e + p \to n + e^+$	987	714	858	$\bar{p} = c_{12}^2 = 0.69 \text{ (NH)}, \langle E_{\nu_x} \rangle = 22 \text{ MeV}$
$\bar{\nu}_e + p \to n + e^+$	1239	894	1080	$\bar{p} = 0.0 \text{ (IH)}, \langle E_{\nu_x} \rangle = 22 \text{ MeV}$
$\nu + p \rightarrow \nu + p$	294	318	453	all flavors $T' > 0.2 \text{ MeV}, \langle E_{\nu_x} \rangle = 18 \text{ MeV}$
$\nu + p \rightarrow \nu + p$	399	405	561	all flavors $T' > 0.2$ MeV, $\langle E_{\nu_x} \rangle = 20$ MeV
$\nu + p \rightarrow \nu + p$	510	492	663	all flavors $T' > 0.2$ MeV, $\langle E_{\nu_x} \rangle = 22$ MeV

of event for $\ ar{
u}_{\mathbf{e}} + \mathbf{p}
ightarrow \mathbf{n} + \mathbf{e}^+$ ~ 800-1000 for 3 kt # of event for $\nu + \mathbf{p}
ightarrow \nu + \mathbf{p}
ightarrow$ 350-650 for 3 kt

Reconstruction of the Original SN V flux

Beacom, Farr & Vogel, PRD66, 033001 (2002) Dasgupta & Beacom, PRD83, 113006 (2011)

$u + p \rightarrow v + p$: Neutral Current (common for all types recoil proton energy dist. of neutrinos)

Determination of SN paramters for v_{μ} , v_{τ}

Beacom, Farr & Vogel, PRD66, 033001 (2002)

Dasgupta & Beacom, PRD83, 113006 (2011)

 $u + \mathbf{p}
ightarrow
u + \mathbf{p}
ightarrow
No Uncertainty by Neutrino Oscillations!$

Earth Matter Effect ? Necessary Conditions

Dighe & Smirnov, PRD62, 033007 (2000)

(I) Mass Hierarchy must be Normal

(2) Original Spectra of v_{e} , \overline{v}_{e} and v_{μ} , v_{τ} , \overline{v}_{μ} , \overline{v}_{τ} must be significantly different

Earth Matter Effect: Shadowing probabilities

Mirizzi, Raffelt and Serpico, JCAP05, 012 (2006)

SN is shadowed for A non-shadowed for B

Site	Latitude	Longitude	Shadowing Probability
			Mantle (Core)
Kamioka, Japan	$36.42^{\circ}\mathrm{N}$	137.3° E	$0.559\ (0.103)$
South Pole	90^{o} N	-	$0.413\ (0.065)$
ANDES	$30.25^{o}\mathrm{S}$	$68.88^{o}W$	$0.449\ (0.067)$
SNO, Canada	$46.476^{\circ}\mathrm{N}$	81.20°E	$0.571 \ (0.110)$

	Earth Ma	atter Effect				
Case	Kamioka	South Pole	Shadowing Probability			
		Mantle (Core)				
(1)	No	No	$0.152 \ (0.832)$			
(2)	Yes	No	0.435 (0.104)			
(3)	No	Yes	$0.288 \ (0.065)$			
(4)	Yes	Yes	0.125 (0.000)			

shadowing prob. for one detector only

shadowing prob. for two detectors prob. that at least one detector is showed is **0.848**

Historical Galactic SN distribution

prepared by T. Mühlbeier

Earth Matter Effect: Shadowing probabilities

	Eart	h Matter Ef					
Case	Kamioka	South Pole	ANDES	Shadowing Probability			
				Mantle (Core)			
(1)	No	No	No	$0.024 \ (0.767)$			
(2)	Yes	No	No	0.388 (0.105)			
(3)	No	Yes	No	$0.034\ (0.061)$			
(4)	No	No	Yes	$0.128\ (0.063)$			
(5)	Yes	Yes	No	0.106 (0.000)			
(6)	No	Yes	Yes	$0.254\ (0.003)$			
(7)	Yes	No	Yes	$0.047 \ (0.000)$			
(8)	Yes	Yes	Yes	0.020 (0.000)			

		Earth Matt					
Case	Kamioka	South Pole	ANDES	SNO	Shadowing Probability		
					Mantle (Core)		
(1)	No	No	No	No	$0.008\ (0.657)$		
(2)	Yes	No	No	No	0.206 (0.105)		
(3)	No	Yes	No	No	0.034 (0.061)		
(4)	No	No	Yes	No	0.001 (0.063)		
(5)	No	No	No	Yes	0.016 (0.111)		
(6)	Yes	Yes	No	No	0.205 (0.000)		
(7)	Yes	No	Yes	No	0.000 (0.000)		
(8)	Yes	No	No	Yes	0.282 (0.000)		
(9)	No	Yes	Yes	No	0.163(0.003)		
(10)	No	Yes	No	Yes	0.000 (0.000)		
(11)	No	No	Yes	Yes	$0.127 \ (0.000)$		
(12)	No	Yes	Yes	Yes	$0.091 \ (0.000)$		
(13)	Yes	No	Yes	Yes	$0.047 \ (0.000)$		
(14)	Yes	Yes	No	Yes	0.011 (0.000)		
(15)	Yes	Yes	Yes	No	0.012 (0.000)		
(16)	Yes	Yes	Yes	Yes	0.008 (0.000)		

shadowing prob. for three detectors

prob. that at least one detector is showed is **0.976**

shadowing prob. for four detectors

prob. that at least one detector is showed is **0.992**

Idenfitying the Earth Matter Effect by comparing SK and ANDES (for SN@5kpc)

	E < 30 MeV	$30 < E/{\rm MeV} < 40$	$40 < E/{\rm MeV} < 50$	E > 50 MeV	Case	Incompatibility
Vacuum (observed)	18159 ± 135	4973 ± 71	2032 ± 45	889 ± 30	$\langle E_{\nu_x} \rangle = 22 \text{ MeV}$	3.1 <i>o</i>
1000 km (prediction)	18132 ± 374	5065 ± 198	1908 ± 121	700 ± 74	$\hat{\beta_x} = \beta_e = 4$	
Vacuum (observed)	17395 ± 132	5785 ± 76	2583 ± 51	1147 ± 34	$\langle E_{\nu_x} \rangle = 22 \text{ MeV}$	2.2σ
1000 km (prediction)	17370 ± 367	5858 ± 213	2483 ± 139	988 ± 87	$\beta_x = 4 \beta_e = 3$	
Vacuum (observed)	16031 ± 127	6674 ± 82	3594 ± 60	1978 ± 45	$\langle E_{\nu_x} \rangle = 22 \text{ MeV}$	0.7σ
1000 km (prediction)	16011 ± 352	6728 ± 228	3541 ± 166	1917 ± 122	$\beta_x = 4 \beta_e = 2$	
Vacuum (observed)	16863 ± 130	5722 ± 76	2864 ± 54	1604 ± 40	$\langle E_{\nu_x} \rangle = 22 \text{ MeV}$	3.2σ
1000 km (prediction)	16837 ± 361	5787 ± 212	2731 ± 145	1321 ± 101	$\hat{\beta_x} = \beta_e = 3$	
Vacuum (observed)	15499 ± 125	6611 ± 81	3875 ± 62	2434 ± 49	$\langle E_{\nu_x} \rangle = 22 \text{ MeV}$	1.7σ
1000 km (prediction)	15479 ± 346	6657 ± 227	3789 ± 171	2250 ± 132	$\beta_x = 3 \beta_e = 2$	
Vacuum (observed)	14790 ± 122	6388 ± 80	4089 ± 64	3059 ± 55	$\langle E_{\nu_x} \rangle = 22 \text{ MeV}$	2.8σ
1000 km (prediction)	14766 ± 338	6419 ± 223	3971 ± 175	2701 ± 145	$\beta_x = \beta_e = 2$	
Vacuum (observed)	17686 ± 133	5240 ± 72	2439 ± 49	1285 ± 36	$\langle E_{\nu_x} \rangle = 24 \text{ MeV}$	4.3σ
1000 km (prediction)	17655 ± 370	5343 ± 203	2272 ± 133	990 ± 88	$\hat{\beta_x} = \beta_e = 4$	
Vacuum (observed)	16922 ± 130	6052 ± 78	2990 ± 55	1543 ± 39	$\langle E_{\nu_x} \rangle = 24 \text{ MeV}$	3.1σ
1000 km (prediction)	16892 ± 362	6136 ± 218	2847 ± 148	1278 ± 100	$\beta_x = 4 \beta_e = 3$	
Vacuum (observed)	15557 ± 125	6941 ± 83	4001 ± 63	2374 ± 49	$\langle E_{\nu_x} \rangle = 24 \text{ MeV}$	1.7σ
1000 km (prediction)	15533 ± 347	7006 ± 233	3905 ± 174	2207 ± 131	$\beta_x = 4 \beta_e = 2$	
Vacuum (observed)	16441 ± 128	5858 ± 77	3174 ± 56	2022 ± 45	$\langle E_{\nu_x} \rangle = 24 \text{ MeV}$	4.0σ
1000 km (prediction)	16409 ± 356	5928 ± 214	3007 ± 153	1625 ± 112	$\hat{\beta_x} = \beta_e = 3$	
Vacuum (observed)	15077 ± 123	6746 ± 82	4185 ± 65	2853 ± 53	$\langle E_{\nu_x} \rangle = 24 \text{ MeV}$	2.5σ
1000 km (prediction)	15051 ± 341	6797 ± 229	4065 ± 177	2554 ± 141	$\beta_x = 3 \beta_e = 2$	
Vacuum (observed)	14439 ± 120	6400 ± 80	4248 ± 65	3402 ± 58	$\langle E_{\nu_x} \rangle = 24 \text{ MeV}$	3.3σ
1000 km (prediction)	14410 ± 334	6430 ± 223	4116 ± 179	2948 ± 151	$\hat{\beta_x} = \beta_e = 2$	

If Spectra at SK and ANDES do not agree, Earth Matter Effect

Identify the SN location in the Sky only by using neutrinos by "Triangulation" Only by using the timing information, it is possible to located SN if we have 4 detectors at different sites on Earth

Analogy with GPS

Identify the SN location in the Sky only by using neutrinos by "Triangulation" Only by using the timing information, it is possible to located SN if we have 4 detectors at different sites on Earth

Analogy with GPS

Identify the SN location in the Sky only by using neutrinos by "Triangulation" Only by using the timing information, it is possible to located SN if we have 4 detectors at different sites on Earth

Analogy with GPS

Supernova Neutrino Early Warning System

Super-Kamiokande @Kamioka LVD (Large Volume Detector)@Gran Sasso Borexino@Gran Sasso IceCube@South Pole

http://snews.bnl.gov/

Muhlbeier et al, PRD88, 085010 (2013) [arXiv:1304.5006[astro-ph]]

By using 3 detectors ...

Assuing SN at Galactic Center and time resolution of 4 ms

By using 3 detectors ...

Assuing SN at Galactic Center and time resolution of 2 ms

By using 4 detectors ...

Other Possibilities?

KamLAND-Zen experiment

KamLAND detector (1kton liquid scintillator(LS) and) and 1879 PMTs) + Xe-loaded liquid Scintillator

13 ton Xe loaded liquid Scintillator in an inner balloon(IB) was Installed in the current KamLAND detector

Ονββ search with KamLAND detector

Advantages

- Well-known detector response
- Surrounded by clean liquid scintillator as a good shield
- Large mass experiment, scalability

Demerits

- Not good energy resolution (6.6%/ \sqrt{E} @ 2.6MeV)
- No particle identification for signal β and b.g. γ

¹³⁶Xe as a target ββ nucleus

- Soluble to liquid scintillator (up to 3wt%)
- Established enrichment method
- Relatively slow 2vββ decay

Target of 1st phase : $<m_{\beta\beta} > ~80meV$ (KKDC claim, degenerated) Future upgrade plan : $<m_{\beta\beta} > ~20meV$

Test of sterile neutrinos by suing artificial source

CeLAND, White Paper arXiv:1309.6805

Sensitivity of CeLAND

Summary

ANDES (Agua Negra Deep Experiment Site)

- First Underground Laboratory in the Southern Hemisphere -

can offer varios interesting scientific programs neutrinos (solar, geo SN neutrinos, 0vββ, etc), dark matter, nuclear astrophysics (cross section measurements), biology, etc See the talk by Xavier

We propose to build a few kt liquid scintilation based neutrino detector for Geoneutrino observation (this talk) SN neutrino observation (this talk)

Solar neutrinos, artificial sources (to be studied) Some interesting (complementary) contributions to the current detectors can be achieved

Summary (2)

Geoneutrino observation

Higher geoneutrino flux than at Kamioka and Gran Sasso, interesting to confirm

Very few nearby reactors is an advantage for ANDES

SN neutrino observation

NC reactions (such as p-v elastic scattering) provides better understanding of SN physics (independent of oscillation)

Earth matter effect, if observed, provides information on neutrino mass hierachy

Thank you very much for attention!

http://andeslab.org

Backup Slides
Earth Matter Effect

$$F^{\oplus}_{\bar{\nu}_{e}}(E) = \bar{p}^{\oplus}(E)F^{0}_{\bar{\nu}_{e}}(E) + [1 - \bar{p}^{\oplus}(E)]F^{0}_{\bar{\nu}_{x}}(E),$$

$$\bar{p}^{\oplus}(E) = \frac{1}{|U_{e2}|^2 - |U_{e1}|^2} \left[\left\{ |U_{e2}|^2 - \bar{p}(E) \right\} \bar{p}_{1e}^{\oplus} + \left\{ \bar{p}(E) - |U_{e1}|^2 \right\} \bar{p}_{2e}^{\oplus} \right]$$

$$\bar{p}_{1e}^{\oplus} = |U_{e1}|^2, \ \bar{p}_{2e}^{\oplus} = |U_{e2}|^2$$
 means no earth effect

 $\Delta F_{\bar{\nu}_e} \equiv F_{\bar{\nu}_e}^{\oplus}(E) - F_{\bar{\nu}_e}(E) \simeq (\bar{p}_{1e}^{\oplus} - c_{12}^2) \left\{ F_{\bar{\nu}_e}^0(E) - F_{\bar{\nu}_x}^0(E) \right\}$

Normal Mass Hierarchy

Dighe-Smirnov, hep-ph/9907423

At least five phases of neutrino emission can be identified.

C. Cardall, CIPANP 2012

To study the effect of oscillation and/or infer the original SN parameters in a less model dependent way, let us deifne,

CC

CC/NC dependence on $\langle E_{\bar{\nu}_e} \rangle$

CC/NC dependence on \overline{p}

CC/NC dependence on luminosity

SN v "Oscillogram"

Akhmedov, Maltoni & Smirnov, JHEP 05, 077 (2007), 06, 072 (2008)

Total energy released by SN

$$\Delta E = E_{\text{inicial}} - E_{\text{final}} \sim -G_N \frac{M}{R_{\text{i}}} - \left(-G_N \frac{M}{R_{\text{f}}}\right)$$
$$\sim G_N \frac{M}{R_{\text{f}}} \sim 3 \times 10^{53} \text{erg}$$

 $M \sim M_{\odot}, R_i \sim 1000 \text{ km}, R_f \sim 10 \text{ km}$

observed energy of explositon (kinetic + radiation) is only ~I % de ΔE

neutrinos carry ~ 99 % of energy of ΔE !

Candidate for the next galactic supernova

Betelgeuse !?

Distance ~ 640 light yrs ~ 20 solar mass ~ 1000 solar radius red giant

