CUORE and the future of 0vββ decay with bolometers

Raul Hennings Yeomans UC Berkeley

4th International Workshop for the Design of the Andes Underground Laboratory

Neutrinoless double beta decay

Modo de decaimiento hipotético que es permitido si los neutrinos son partículas Majorana, es decir, $\bar{\nu}_i \equiv \nu_i$

Sólo puede ser observado si el típico decaimiento beta es energéticamente prohibido, lo cual ocurre para algunos núcleos con número par de protones y neutrones cuyo estado base energético es más bajo que el de sus núcleos vecinos impar-impar.

Aunque no necesariamente el 0vββ puede ser mediado por neutrinos ligeros, en caso de ser observado implicaría que los neutrinos son partículas Majorana y el número leptónico no es conservado por dos unidades.

4th ANDES workshop

Raul Hennings Yeomans

Candidate isotopes with a large Q-value

35 isótopos pueden en principio hacer $0v\beta\beta$ pero sólo 9 tienen un valor de Q > 2 MeV y tienen abundancia isotópica que se puede trabajar (exp)

Isotope	$G \ [10^{-14} \ {\rm yrs}^{-1}]$	$Q \; [\mathrm{keV}]$	Nat. Abund. [%]
^{48}Ca	6.35	4273.7	0.187
$^{76}\mathrm{Ge}$	0.623	2039.1	7.8
$^{82}\mathrm{Se}$	2.70	2995.5	9.2
⁹⁶ Zr	5.63	3347.7	2.8
$^{100}\mathrm{Mo}$	4.36	3035.0	9.6
110 Pd	1.40	2004.0	11.8
$^{116}\mathrm{Cd}$	4.62	2809.1	7.6
124 Sn	2.55	2287.7	5.6
$^{130}\mathrm{Te}$	4.09	2530.3	34.5
$^{136}\mathrm{Xe}$	4.31	2461.9	8.9
$^{150}\mathrm{Nd}$	19.2	3367.3	5.6

Lifetime and the Effective Majorana Mass

A quick note about extracting the mass

$$<\mathbf{m}_{\beta\beta}> = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{i\alpha_1} m_2 + s_{13}^2 e^{i\alpha_2} m_3$$

- (a) Se requeriría calcular de forma confiable y precisa a los NME
- (b) También saber cual es el mecanismo que da origen a la violación del número leptónico (actualmente se asume un modelo)
- (c) Aún en el modelo más "sencillo", $\langle m_{\beta\beta} \rangle$ depende de la Jerarquía de Masas, valores de mezcla y fases de Majorana que admite el caso de que si la Jerarquía es Normal, es posible que el 0v $\beta\beta$ no sea observable

The figure of merit

For zero background

$$m_{\nu} \rangle \propto 1 / \sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1 / \sqrt{Nt}$$

For background subtraction

$$\left\langle m_{\nu} \right\rangle \propto 1/\sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1/(Nt)^{1/4}$$

Experimental methods

Ventajas:

topología del evento, reducción del ruido, utilización de variedad de isótopos.

Desventajas:

masa del detector, su resolución, y la eficiencia geométrica de detección. <u>Tecnología:</u>

detectores de 'tracks' de partículas

Técnica capaz de distinguir entre los modelos del 0vββ

<u>Tecnología:</u> TPC presurizada (10-16 atm)

Ventajas:

masa del detector, su resolución, la eficiencia geométrica

Desventajas:

topología del evento, reducción del ruido <u>Tecnología:</u>

calorímetros como bolómetros, diodos de Ge, centelleadores, detectores de neutrinos

Objetivo principal es establecer la observación del $0\nu\beta\beta$

4th ANDES workshop

An incomplete list of experiments

	lsotope	Q (keV)	I. A.	Detector mass (kg)	Efficiency	FWHM (keV)	BKG rate (c/ keV/kg/y)	Run time (year)	Half-life sensitivit y (year)	M _{ββ} sensitivity (meV)	Location	Status
CUORE	¹³⁰ Te	2527	33.80%	741	83%	5	0.01	5	1.60E+26	47 - 100	LNGS	Construction, 2014
AMoRE	¹⁰⁰ Mo	3034	96%	100		15	0.001	5	7.00E+26	20 - 70	YangYang	R&D
Lucifer	⁸² Se	2995	95%	17.6 (ISO)		~10	0.003-6	5	2.30E+26	35 - 94	LNGS	R&D
Majorana Demonstrator	⁷⁶ Ge	2039	7.4%, 86%	10, 30		5	0.00075	5	9.00E+25	106 -295	Sanford	Construction, 2014
Gerda I	⁷⁶ Ge	2039	7.4%, 86%	22.2*	97.2	4.5	0.02	1	2.50E+25		LNGS	Started 2011
Gerda II	⁷⁶ Ge	2039	7.4%, 86%	40	97.2	4.5	0.001	5	1.90E+26	73 - 203	LNGS	Construction, 2013
COBRA	¹¹⁶ Cd	2805	7.5	0.1	61	100~250	100	173 days	9.40E+19		LNGS	Running*
KamLAND-ZEN	¹³⁶ Xe	2458	91	320	~80	240	~5E-4	1		~80	Kamioka	Running
SNO+	¹⁵⁰ Nd	3370	5.6	43.7 (ISO)		215		5	7.70E+24	172 - 180	SNOLab	Construction, 2014
CANDLES	⁴⁸ Ca	4271	0.187	305				3		~400	Kamioka	Running
EXO-200	¹³⁶ Xe	2458	81	98.5	71	100	1.50E-03	4		~100	WIPP	Running
NEXT	¹³⁶ Xe	2458	90	90		~25	8.00E-04	5	5.90E+25	<100	Canfranc	R&D, 2014
SuperNEMO	⁸² Se	2995	90	100	>30	120		5	1.20E+26	40-105	Modane	R&D, 2014

The search with ¹³⁰Te - CUORE (y SNO+)

CUORE @ LNGS

- A 120km de Roma, Italia.
- 3650 mwe de profundidad
- 2.58x10⁻⁸/seg/cm²
- **-** rayos-γ: ~0.73/seg/cm²
- rayos- γ : ~4x10⁻⁶n/seg/cm²

4th ANDES workshop

Raul Hennings Yeomans

CUORICINO results

4th ANDES workshop

CUORE-0 recent result

pero con ensamblado "limpio" y con el cableado que utilizarán las 19 torres (CUORE)

- Lineas γ espectrales del U-238 reducidas a 1/2 (debido a mejor control del radón)
- Líneas γ espectrales del Th-232 no fueron reducidas (provienen del crióstato)
- Líneas a espectrales del U-238 y Th-232 reducidas (mejor tratamiento de las superficies)

El ruido de fondo proveniente de la contaminación de las superficies en CUORE-0 es 6x más pequeño que el de CUORICINO.

CUORE-0 Background Spectrum

4th ANDES workshop

CUORE - 206 kg of ¹³⁰Te inside 988 bolometers

- 988 cristales de TeO₂ operados como un arreglo bolométrico
 - Cristales de 5x5x5 cm3, 750 g c/u
 - 19 Torres con 13 pisos y 4 módulos/piso
 - Un total de 741 kg; 206 kg de ¹³⁰Te
- Resolución en Energía demostrada de ~0.2% en $Q_{\beta\beta,}$
- Refrigerador nuevo y crióstato nuevo
- Utilización de materiales radio-puros y ensamblado "limpio" para lograr un ruido de fondo bajo dentro de la ventana de energía de interés
- Sistema de calibración único en el campo de experimentos de bajo ruido.

Raul Hennings Yeomans

CUORE

Construction

CUORE

Construction

Things CUORE is considering beyond CUORE

Enriquecimiento del Te-130 es relativamente barato comparado con Ge-76

Medir la luz y calor generados en cada evento

J. Beeman, et al., Astropart. Phys. 35 (2012) 558.C. Arnaboldi, et al., Astropart. Phys. 34 (2010) 143.

Utilizar luz Cherenkov o de Centelleo para distinguir partículas α de las β/γ

³⁰TeO₂, Zn⁸²Se, ¹¹⁶CdWO₄, Zn¹⁰⁰MoO₄

Mejorar los sensores utilizando superconductores:

(a) TES (Transition Edge Sensors) en USA

(b) MKIDS (Mutual Kinetic Inductance Detectors) en ITALIA

R&D at UC Berkeley

Transition Edge Sensors (TES)

entre el TES y el absorbedor/baño de calor

K.D. Irwin, Appl. Phys. Lett. Vol. 66, 1998 (1995)

 $C_{tot} = C_{bolo} (\sim T^3) + C_{TES} (\sim T) +$ C_{other} (e.g. causado por impurezas en el cristal)

SQUIDs

Superconducting Quantum Interface Devices

Comparison of Energy Resolution

Scalability and low Tc for good δE

Implantación de 56Fe+

Fabricación de TES de baja Tc

- El caso de CDMS y la implantación de iones
- La fase alpha del W y CRESST
- Utilizar bi-capas de películas delgadas de material Superconductor/Normal (Proximity Effect)

Producción en grandes cantidades (cientos)

- Minimizar el #TES
- Simplifical el acoplamiento con el cristal
- Podría el TES estar en el baño térmico?
- Los amplificadores SQUID actualmente pueden estar en arreglos de hasta 10,000

Empezamos a colaborar con CDMS (probamos sus muestras de W) y con Argonne National Laboratory a donde voy y hago muestras con bicapas de superconductores basados en Iridio.

R&D at UC Berkeley

Cobalt-60 thermometry and a dry dilution refrigerator

Fabricación de TES de baja Tc

SQUIDs (Superconducting Quantum Interference Devices)

In collaboration with CDMS at UC Berkeley

[•] Ir/Au, Ir/Pd, ...

4th ANDES workshop

Resistance mOhm

Raul Hennings Yeomans

Background rejection

Bandwidth increase

- TES when voltage biased in negative feedback mode, it increases the bandwidth (MHz can be achieved, if that is the optimal signal/noise).
- This may allow to observe pulse shape differences between surface and bulk events due to differences in phonon down-conversion.
- The use of superconducting films as means to identify surface vs. bulk events, here, for example, Schnagl et al. NIMA 444 (2000)245-248 and Nones et al. J. Low Temp. Phys (2012) 167:1029-1034

Quasiparticles recombination time τ_{R}

Efforts outside CUORE with bolometers

LUCIFER

Low-background Underground Cryogenic Installation For Elusive Rates

ZnMoO₄ Pulse Shape Discrimination

Thermistors

 $ZnMoO_4$

- Claim to be able to measure few/1000 diferences between alpha and gamma events based on pulse shape (Heat) alone
- alpha pulses have slower raise time and faster decay time
- To remove shape dependence on Energy, variables were linearized in the 2300-3200keV range

Also LUMINEU lead by A. Giuliani will use ZnMoO₄ crystals and NbSi as phonon sensors

4th ANDES workshop

⁵⁵Fe-source

PTFE

Reflecting sheet

330g

19

14

AMORE

Advanced Mo-based Rare process Experiment

A search for neutrino less double beta decay of 100Mo isotope with ⁴⁰Ca¹⁰⁰MoO₄ cryogenic scintillator detector

4th ANDES workshop

